1. The equation $x^3 + 7x - 2 = 55$ has a solution between 3 and 4.

Use trial and improvement to find this solution. Give your answer to 1 decimal place.

X	$x^3 + 7x - 2$	comment
3.5	(3.5) ³ +7(3.5)-2 = 65,375	too big
3.3	$(3.3)^3 + 7(3.3) - 2$ = 57.037	too big
3.2	$(3.2)^3 + 7(3.2) - 2$ = 53.168	too small
3. 25	$(3.25)^{2} + 7(3.25) - 2$ $= 55.078125$	too big

2. Use trial and improvement to solve $x^3 - x^2 = 85$ Give your answer to 1 decimal place.

X	$\chi^3 - \chi^2$	comment
5	(5) ³ - (5) ² = 100	too big
4.8	(4.8)3-(4.8)2=87.552	too 519
4.7	(4.7)3-(4:7)=81.733	too small
4.75	$(4.75)^3 - (4.75)^2$ = 84.609375	too small

.....4. (4)

3. Use trial and improvement to solve $x^3 + 5x = 70$ Give your answer to 1 decimal place.

X	x ³ + 55c	Comment
4	(4) ³ + 5(4) = 84	too high
3.8	$(3.8)^3 + 5(3.8)$ = 73.872	too high
3.7	$(3.7)^3 + 5(3.7)$ = 69.153	tou low
3.75	(3.75) 3+5(3.75) = 71.484375	toonigh

..... (4)

4. An approximate solution to an equation is found using this iterative process:

$$x_{n+1} = \sqrt{(x_n) + 10}$$
 and $x_1 = 3$

a) Work out the values of x_2 and x_3

$$\chi_2 = \sqrt{(3) + 10} = \sqrt{13} = 3.61 (200)$$
 $\chi_3 = \sqrt{(\sqrt{13}) + 10} = 3.69 (200)$
 $\chi_{3} = \sqrt{(\sqrt{13}) + 10} = 3.69 (200)$

b) Work out the solution to 3 decimal places

$$\chi_4 = 3.6998068$$
 $\chi_5 = 3.701325006$
 $\chi_6 = 3.76153009$
 $\chi_7 = 3.701557792$
 $\chi_8 = 3.701561534$

$$3.702$$
 (1)

5. An approximate solution to an equation is found using this iterative process:

$$x_{n+1} = \frac{(x_n)^3 - 3}{8}$$
 and $x_1 = -1$

a) Work out the values of x_2 and x_3

$$\chi_{2} = \frac{(-1)^{3} - 3}{8} = -\frac{1}{2}$$

$$\chi_{3} = -\frac{25}{64}$$

$$\frac{-\frac{1}{2}}{64} = -\frac{25}{64} = (2)$$

b) Work out the solution to 6 decimal places

$$\chi_4 = -0.3824505806$$
 $\chi_5 = -0.3819925565$
 $\chi_6 = -0.3819674637$
 $\chi_7 = -0.3819660907$
 $\chi_8 = -0.3819660156$

$$-0.381966$$
 (1)

6. A sequence is defined by the term-to-term rule:

$$U_{n+1} = U_n^2 - 8U_n + 17$$

a) Given that $U_1 = 4$, find U_2 and U_3

$$U_2 = (4)^2 - 8(4) + 17 = 1$$
 $U_3 = 10$

b) Given instead that U_1 =2, find U_2 , U_3 and U_{100}

$$U_2 = 5$$
 $U_3 = 2$
 $U_4 = 5$

$$U_2 = 5$$
 $U_3 = 2$ $U_{100} = 5$ (3)

7.(a) Show that the equation $x^3 + 4x = 1$ has a solution between x = 0 and x = 1

$$2c^{3} + 42c - 1 = 0$$

$$(0)^{3} + 4(0) - 1 = -1$$

$$(1)^{3} + 4(1) - 1 = 4$$

(b) Show that the equation $x^3 + 4x = 1$ can be rearranged

to give
$$x = \frac{1}{4} - \frac{x^3}{4}$$

$$x^{3} + 4x = 1$$

$$4x = 1 - x^{3}$$

$$x = \frac{1}{4} - \frac{x^{3}}{4}$$

.....(1)

(c) Starting with $x_0 = 0$, use the iteration formula $x_{n+1} = \frac{1}{4} - \frac{x_n^3}{4}$ twice, to find an estimate to the solution of $x^3 + 4x = 1$

$$\mathcal{X}_{1} = \frac{1}{4} - \frac{(0)^{3}}{4} = \frac{1}{4}$$

$$\mathcal{X}_{2} = 0.24609375$$

$$\mathcal{X}_{3} = 0.2462740093$$

.....(3)